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1. Introduction

The usual semantics for first-order logic says that the proposition that
Fred is blue is true when Fred is in the extension of ‘is blue’, which
I’ll simply construe as the set or class of blue things.1 The semantics
involves two commitments:

Predicate Extensionality. The predicate’s semantic value is its
extension.

Predicate Containment. For true singular propositions, the
predicate’s semantic value contains the subject’s semantic value.

I’ll call this standard type of semantics logical extensionalism since it
treats the truth (or falsity) of a singular proposition as if it depends
on whether the predicate’s extension contains the subject’s semantic
value. For ease of expression, I’ll call any variant of logical extension-
alism an extensional approach.

Leibniz favored an inverse approach. His conceptual containment
theory (hereafter, “the containment theory”) says that the proposition
that Fred is blue is true when the concept of Fred contains the concept
of being blue.2 Hence, the containment theory differs from standard
extensional approaches in at least two important ways. The first dif-
ference concerns the kinds of entities assigned to predicates. To bring
this difference into relief, consider coextensional predicates such as
‘is a cordate’ and ‘is a renate’ which apply to the same actual indi-
viduals.3 Since the predicates have different meanings but the same
extension, extensions alone fail to capture the difference. We can cap-
ture the difference, however, if we assign the property or concept of
being a cordate to one and the different property or concept of being
a renate to the other. Properties and concepts are intensional entities,

1. Though, see Simmons (2000).
2. G VII, 211/P 115. A list of abbreviations for Leibniz’s works appears after
the main text. For discussions of the containment theory, see Parkinson (1965),
Mates (1986), Ishiguro (1990), Adams (1994), Lenzen (2004), and Levey (2011).
3. Quine (1951, 21).
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the sorts of entities for which coextensionality doesn’t guarantee iden-
tity. Since Leibniz assigns concepts rather extensions to predicates, he
thereby subscribes to the more general principle below:

Predicate Intensionality. The predicate’s semantic value is an
intensional entity.

The second difference concerns the direction of the containment
relation. To illustrate the difference, consider how you might adjust
your understanding of Fred when you learn something new about him.
When you learn that Fred is blue, you adjust your understanding of
him to include his being blue. Or if you learn that Fred isn’t red, you
adjust your understanding of Fred to exclude his being red.4 What
anyone would grasp in a perfect understanding of Fred as he actually
is would encompass all and only what is truly predicable of Fred. For
Leibniz, a name’s meaning is a complete concept, which is roughly what
would be grasped in a perfect understanding of the name’s referent
(or would-be referent, in the case of a possible individual).5 A singular
proposition is true, then, when the complete concept of the subject
contains the concept of the predicate. So Leibniz also subscribes to the
converse of Predicate Containment:

Subject Containment. For true singular propositions, the sub-
ject’s semantic value contains the predicate’s semantic value.6

Predicate Intensionality and Subject Containment together form an al-

4. Heim (1983) also captures these adjustments in understanding, but not in a
way that respects Predicate Intensionality.
5. In DM 8/AG 41, Leibniz writes: “Thus the subject term must always contain
the predicate term, so that one who understands perfectly the notion of the
subject would also know that the predicate belongs to it.”
6. Leibnizian complete concepts exist in God’s mind, but we needn’t hold
that God exists to endorse Subject Containment. If we distinguish acts of un-
derstanding from what is graspable in them, what would be grasped in an act
of perfect understanding may exist even if no such act ever does. With Subject
Containment, we can also define what it means for an act of understanding
‘Fred’ to be perfect: it involves grasping all and only the intensional entities
contained in the semantic value of ‘Fred’ as being so contained.

ternative to logical extensionalism. I’ll call this alternative logical inten-
sionalism and any of its variants an intensional approach. It says that a
singular proposition is true when the subject’s semantic value contains
an intensional entity which is the predicate’s semantic value.

Logical intensionalism’s venerable history includes both Leibniz’s
containment theory and Richard Montague’s natural language seman-
tics.7 Leibniz and Montague differ most crucially in how they treat
intensional entities. Whereas Montague defines intensional entities in
relation to their extensions across possible worlds, Leibniz treats inten-
sions as primitive. In this paper, I develop a new semantics for first-
order logic inspired by Leibniz’s primitive intensionalism. This project
is of interest for a few reasons. First, and as I’ve argued elsewhere,8 we
can use intensions to characterize the shape of possibility space rather
than the other way around, as in Montague semantics. Second, if inten-
sions characterize possibility space rather than the other way around,
we can use them to capture not only intensional distinctions among
coextensive predicates but also hyperintensional distinctions among
necessarily coextensive predicates, all within the context of first-order
logic. Finally, Leibniz’s own primitive intensionalism faces longstand-
ing problems with both relational and quantified propositions. As a
result, no intensional approach to first-order logic with primitive inten-
sions has ever been developed. In constructing my semantics, I show
that such an approach can overcome these problems.

Now for a preview. In § 2, I further explain the motivation for my
new semantics. Then, to clarify the challenges before us, I explain in
§ 3 how relational and quantified statements pose problems for Leib-
niz. In the remaining sections, I present the metaphysical backbone of
the semantics, offer the semantics itself, and explain how it avoids the
problems with relations and quantification that have plagued the con-
tainment theory. The resulting semantics solves problems long thought

7. Although both theories satisfy Subject Containment, I will continue to refer
to Leibniz’s theory exclusively as ‘the containment theory’.
8. Warmke (2015).
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to be unsolvable, can represent hyperintensional distinctions among
properties and impossibilities not representable in standard exten-
sional approaches, and yields, at the same time, an account of logi-
cal consequence that is extensionally equivalent to accounts of logical
consequence in standard extensional approaches to classical first-order
logic.

2. Montague and Others

In Montague semantics, a predicate’s semantic value is a property,
which is defined as a function from possible worlds (and times) to
functions from individuals to truth values.9 Two such functions may
assign the same truth values to the same individuals at the same times
in the actual world but assign different values to individuals in other
possible worlds. So Montagovian properties qualify as intensional en-
tities, and Montague semantics thereby satisfies Predicate Intensional-
ity. Montague semantics also satisfies Subject Containment. A name’s
meaning is its referent’s set of properties, and a singular proposition
is true when that set of properties contains the property expressed by
the predicate. So ‘Fred is blue’ is true when the set of Fred’s properties
contains the property of being blue.

Montague semantics qualifies as an intensional approach, and it
would be relatively simple to use a fragment of it for first-order logic.
But Montague uses possibility space—the distribution of individuals
and their properties across possible worlds—to characterize his in-
tensional entities. Montagovian intensional entities aren’t primitively
intensional. They are defined set-theoretically over their extensions
across possible worlds. But I elsewhere use primitive intensional en-
tities to characterize possibility space. In Warmke (2015), I develop
a new, non-Kripkean semantics for propositional modal logic which
defines necessity and possibility via inclusion and exclusion relations
among primitively intensional entities. Though I don’t have the space
to explain or defend the modal semantics in detail, I’ll highlight the

9. Montague (1970a,b, 1973).

main differences between my approach and standard possible worlds
approaches.10

Standard possible worlds approaches say that 󳇛󵀓φ󳇠 (read “necessar-
ily, φ”) is true when 󳇛φ󳇠 is true in all accessible possible worlds. The
diagram below crudely depicts (without any accessibility relation) the
situation in which a proposition φ is true in all possible worlds w1

through wn, including the actual world, w3:

Figure 1. Necessary truth according to possible worlds approaches.

My semantics, on the other hand, revolves around two properties.
If ‘alpha’ names the actual world, the first is the property of being
alpha, which accounts for the truth of non-modal propositions. So 󳇛φ󳇠
is true when the propositional property of being such that φ (hereafter
[φ]) is part of being alpha (hereafter, A). And just as we might say that
being a dog in general is part of being Fido, the property of being a
world in general is part of being alpha. This more general property of
being a world accounts for the truth of modal propositions. So 󳇛󵀓φ󳇠 is
true when [φ] is part of being a world in general (hereafter, W). The
diagram below roughly depicts the situation in which φ is necessary:

10. Warmke (2016, 710–712) contains a slightly longer presentation.
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Figure 2. Necessary truth according to my modal semantics.

Moreover, instead of using an accessibility relation among worlds to
validate or invalidate certain modal principles, I use a property part-
hood relation. For instance, in possible worlds approaches, the T axiom
schema (󵀓φ ⊃ φ) is valid in models in which every world accesses it-
self. But in my semantics, the T axiom is valid when every part of W
is part of A. Since W is part of A in the models we’d use to capture
metaphysical modality, the transitivity of property parthood guaran-
tees that every part of W is part of A. For if [φ] is part of W in any
of these models (so that 󳇛󵀓φ󳇠 is true in them), then [φ] is also part
of A in those models (so that 󳇛φ󳇠 is true in them). The property part-
hood relation governs primitive intensions and forms the metaphysical
backbone of both my modal semantics and my semantics here for first-
order logic. I revisit property parthood in § 4.

In the wider metaphysical background, relations among intensional
entities explain the shape of modal space and not the other way
around. So, for instance, horses are mammals in every possible world
simply because being a mammal is part of being a horse. Since being a
mammal is part of being a horse, nothing could instantiate the property
of being a horse without also instantiating the parts of that property,

including the property of being a mammal.11 So all possible horses are
mammals. Similarly, p is necessarily true when being such that p is part
of being a world (in general). If being such that p is part of being a world,
nothing could instantiate the property of being a world without in-
stantiating the parts of that property, including the property of being
such that p. So all possible worlds are such that p, as we might say.
The mereological structures among intensional entities determine the
shape of possibility space. Now, if intensionality determines and is not
determined by the shape of possibility space, an intensional approach
needn’t run on the fuel of possible worlds. An intensional approach
can run cleanly without them. I show how this is possible even in the
context of extensional first-order logic in §§ 4 and 5.

Whether we should ultimately endorse primitive intensions is a
question about which reasonable people can disagree and is beyond
the scope of this paper. But if we do endorse them, or if we want to
see what theoretical work they can do before we judge their case, the
present paper serves as a data point on an evolving scorecard theorists
will be unable to assess both fully and fairly for quite a long time. In
many ways, possible worlds have been wildly successful. But they also
have a half-century head start. A grace period for primitive intensions
seems reasonable. And although I’ve already used primitive intensions
in the contexts of modal metaphysics and standard deontic logic,12 I
plan to use them in accounts of sets, numbers, counterfactuals, quan-
tified modal logic, and meaning generally.

Furthermore, I and many others suspect that some necessarily co-
extensive predicates have different meanings. We are fans of hyperin-
tensionality, in other words, and fans of hyperintensionality may find
it valuable that my semantics permits distinctions among necessarily
coextensive predicates.13 The predicates ‘is three-sided’ and ‘is three-

11. And, if we so desire, we can use further relations among primitive inten-
sions to account for why it’s impossible for a property to be instantiated with-
out its parts.
12. Warmke (unpublished).
13. It permits hyperintensional distinctions but does not require them. Bealer

philosophers’ imprint - 4 - vol. 19, no. 28 (june 2019)



craig warmke Logic Through a Leibnizian Lens

angled’, for example, share the same extension across possible worlds.
So they each receive the same function, the same Montagovian prop-
erty. But many seem to think these predicates differ in meaning.14 And
if numbers exist necessarily and everything is necessarily self-identical,
then the property of being self-identical is necessarily coextensive with
the property of being such that the number 5 exists.15 And if a set and
its members exist in all the same possible worlds, then the property of
being a human is necessarily coextensive with the property of being
both human and the member of a set. The properties in each pair ar-
guably differ, but Montague semantics does not capture these hyper-
intensional differences because Montagovian properties are identical
when their extensions across possible worlds are identical. Montago-
vian properties are, by definition, non-hyperintensional. My semantics,
however, can easily capture hyperintensional distinctions.16

Before we examine the containment theory, I want to convey a point
about semantic theorizing in general. Depending on our purposes, we
may prefer one semantics or another given how well it captures some
aspect or conception of meaning. For example, as a Leibnizian, I believe
that meaning has at least two components: (i) intension, the component
related to cognition, reasoning, and the phenomena of analyticity, and
(ii) extension, the component mediated by an expression’s intension
and which consists of the object(s), if any, an expression applies to
in any possible situation.17 Given this Leibnizian and also admittedly

(1982, 3), Chierchia and Turner (1988, 263), Menzel (1993, 62–64), and Zalta
(1988, 6 ff.) are also motivated to capture hyperintensionality. But their theories
and others like them do not use a Leibnizian containment structure within an
intensional approach, in my sense.
14. Among the many who think trilaterality and triangularity differ, see Nolan
(2014) and Sober (1982).
15. For similar cases, see Marshall (2015, 3) and Plantinga (1976, 146).
16. I return to this point again in § 4.
17. Leibnizian extensions are thus not actual world extensions but extensions
across possible worlds. Thus, the “intensions” in Montague and Chalmers
(2003, 2012) resemble Leibnizian extensions more closely than they do Leib-
nizian intensions. Only with Leibnizian intensions does it make sense to say
that being a mammal is part of being a dog. For Leibniz, as for me, this is quite
literally true. But it isn’t true for Montague. Even if we use classes of possible

non-standard view of meaning, Montague semantics operates heavily
on the side of extension. It assigns not Leibnizian intensions to predi-
cates, but the characteristic functions of Leibnizian extensions. So, as I
see it, Montague and I aren’t so much competitors as coworkers toiling
along different axes of meaning. Or, to borrow another metaphor, the
garden has space for more than just my flower alone or Montague’s
flower alone. We can reject horticultural tyranny and let the flowers
bloom. I simply want to show that, contrary to the received consensus,
primitive intensionalism is viable and worth further consideration.

3. Containment Theory

Leibniz holds that in true singular affirmatives (e.g., Socrates is tall),
the concept of the subject contains the concept of the predicate. In
singular affirmatives, the concept of the subject is the concept of an
individual. And Leibniz famously holds that individual concepts are
complete, that “the individual concept of each person contains once
and for all everything that will ever happen” to that person.18 So ev-
erything truly predicable of Socrates—that he was snub-nosed, drank
hemlock, etc.—is contained in his complete concept.19 The picture of
individual concepts here differs substantially from the more recent one
of them as functions splayed out across state-descriptions.20 Leibniz’s
individual concepts have “conceptual guts.”21 Each individual concept
contains concepts which characterize its individual. And because each
complete concept contains everything truly predicable of its individ-
ual, complete concepts can account for the truth of any singular affir-
mative proposition.

individuals instead of the corresponding functions and construe the subclass
relation as a kind of parthood (as in Lewis (1986, 1991) respectively), we get
the converse judgement. Since the class of possible dogs forms a subclass of
the class of possible mammals, it is the property of being a dog that would be
part of the property of being a mammal.
18. LA 12.
19. DM 13.
20. Carnap (1947, 181).
21. Cover and O’Leary-Hawthorne (1999, 68).
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3.1 Relations
Since relational predicates also truly apply to individuals, complete
concepts should account for relational truths, too. But Leibniz never ex-
plicitly deals with relational propositions, and the containment theory
doesn’t straightforwardly extend to them. The problem connects to an
objection first expressed by Russell (1937, 12–15) that Leibniz does not
successfully “reduce” relational statements to predicate-subject state-
ments.22 But, as Cover and O’Leary-Hawthorne (1999, 58) claim, Leib-
niz and his commenters have obscured the issue “by a lack of clarity”
about both the target and the kind of reduction at play. Fortunately, we
needn’t wade into the complex debate about reduction here because
the purely formal problem of relations is quite clear. The problem con-
cerns primarily how complete concepts of individuals can account for-
mally for the truth conditions of relational statements in first-order
logic.

We can express the problem as a trilemma. Consider a relational
statement such as ‘A is greater than B’. Whose complete concepts do
we use to account for the truth of such a statement? Which serves
as the Leibnizian subject: ‘A’ alone (or ‘B’ alone), neither, or both? If
‘A’ alone is the subject, then the statement is true, let’s say, when the
complete concept of A contains the concept of being greater than B. But
this says nothing about B’s complete concept. So the treatment counts
the relational statement as true when A’s complete concept contains
the concept of being greater than B even if B’s complete concept fails
to contain the concept of being something such that A is greater than
it. In such a case of inharmonious complete concepts, an aspect of the
world has been represented in two incompatible ways.23 How could
we say that ‘A is greater than B’ is true if B’s complete concept, which
supposedly captures everything true of B, doesn’t capture B’s half of
the relation? Similar remarks apply if ‘B’ rather than ‘A’ serves as the

22. See Parkinson (1965, 39 ff.), Ishiguro (1990, 101–122), and especially Cover
and O’Leary-Hawthorne (1999, Ch. 2).
23. Inharmonious complete concepts appear once more in § 5.5

lone subject of the relational statement.
We might say that neither ‘A’ nor ‘B’ serves as the subject. But this

is a non-starter. If neither A’s nor B’s complete concept accounts for the
relational statement, we have two highly undesirable options. We could
say that containment theories are by nature incomplete because com-
plete concepts fail to capture some meaningful relational propositions.
Or we could simply admit that containment theories are essentially
flawed because they count as meaningless obviously meaningful rela-
tional propositions. Neither option helps us update the containment
theory for first-order logic.

So maybe we should say that ‘A’ and ‘B’ both serve as the subjects
of the relational statement. Then, ‘A is greater than B’ is true when A’s
complete concept contains the concept of being greater than B, and B’s
complete concept contains the concept of being something A is greater
than. This third strategy precludes inharmonious complete concepts
from securing the truth of a relational statement because any relational
statement counts as false overall if one or the other complete concept
fails to represent its side of the relation. This strategy is obviously the
right one, but it nonetheless faces two related obstacles.

Suppose A’s complete concept contains being greater than B, and we
assign B’s complete concept to ‘B’. Then we are threatened with the
result that A’s complete concept contains the concept of being greater
than B’s complete concept, which is nonsense. Quantifying into rela-
tional statements exacerbates the problem. Consider the statement that
A loves everything. If we draw from a domain of complete concepts for
the meanings of logical constants and variables range over the same
domain, we are threatened with the result that the statement is true
when A’s complete concept contains the concept of loving this com-
plete concept, that complete concept, and all other complete concepts
in the domain. We want to use complete concepts to represent that A
loves every individual and not that A loves the complete concept of
every individual. The formal apparatus in § 5 takes the third strategy
but avoids these two obstacles.
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3.2 Quantification
Quantified propositions in general pose problems of an entirely differ-
ent sort for Leibniz. Whereas we now typically treat a universal affir-
mative of the form every A is B as true when the extension of ‘B’ con-
tains the extension of ‘A’, Leibniz says that such a proposition is true
when the intension of ‘A’ contains (in his different sense) the intension
of ‘B’. Unsurprisingly, Leibniz recognized that these two treatments
were inversely related. He writes:

For when I say Every man is an animal I mean that all the men are
included amongst the animals; but at the same time I mean that
the idea of animal is included in the idea of man. ‘Animal’ com-
prises more individuals than ‘man’ does, but ‘man’ comprises
more ideas or more attributes: one has more instances, the other
more degrees of reality; one has the greater extension, the other
the greater intension.24

In this passage, Wolfgang Lenzen (2004, 11) finds evidence for the fol-
lowing thesis (where ‘Int(A)’ denotes A’s intension, ‘Ext(A)’ denotes
A’s extension, and containsi and containse abbreviate “conceptually
contains” and “has as a subset” or “extensionally contains,” respec-
tively):

Inversion-1. Int(A) containsi Int(B) iff Ext(B) containse Ext(A)

As Lenzen notes, Inversion-1 looks suspicious. Given Leibniz’s claim
that mutual containment implies identity,25 it implies the following:

Inversion-2. Int(A) = Int(B) iff Ext(B) = Ext(A)

The right-to-left half of Inversion-2 seemingly conflicts with the idea
that different intensional entities may sometimes have the same ac-
tual extension. But for Leibniz, Ext(A) and Ext(B) are not sets of ac-
tual As and Bs but sets of possible As and Bs. So the right-to-left half

24. NE, IV, xvii, 8, p. 486.
25. C 368/P 58.

of Inversion-2 implies the less problematic but still controversial view
that necessarily coextensive intensional entities are identical.26 We will
revisit this issue in § 4.1.

A more pressing issue concerns how Leibniz alleviates the tension
between Inversion-1 and his treatment of universal affirmatives. They
together seemingly imply that ‘Every A is B’ is true if and only if every
possible A is a possible B. So it appears that universal affirmatives
are necessarily true if true at all. But some universal affirmatives are
contingently true. How does Leibniz account for the contingently true
ones?

For these, Leibniz employs the concept of existing in the actual
world, which I’ll call “the concept of being actual.”27 Concepts of ac-
tual individuals, situations, and actually exemplified properties con-
tain the concept of being actual while concepts of non-actual indi-
viduals, situations, and actually unexemplified properties contain the
concept of being non-actual. Thus, adding the concept of being actual
to the concept of anything non-actual yields conceptual inconsistency.
Leibniz exploits this conceptual inconsistency to treat contingently true
universal affirmatives.

Consider the contingently true universal affirmative that all renates
are cordates. For Leibniz, the concept of being a renate and not a cor-
date contains the concept of being non-actual.28 So the concept of being
an actual renate and not a cordate is inconsistent. Leibniz can then say
that the proposition that all actual renates are cordates is true when
the concept of being an actual renate and not a cordate is inconsistent
or, equivalently, when the concept of being an actual renate contains
the concept of being a cordate.29 Since this treatment doesn’t require

26. Whether Leibniz consistently or wholeheartedly endorsed Inversion-2 in a
way that would preclude distinct necessarily coextensive properties is less than
clear. For example, in NE IV, ii, 1, p. 363, Leibniz distinguishes trilaterality and
triangularity as “different aspects of one and the same thing.”
27. C 270–273.
28. Adams (1994, 65).
29. Lenzen (2004, 79).
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that being a renate itself contains being a cordate, it doesn’t imply that all
possible renates are cordates.30

Now imagine someone like Obama but slightly heavier. We’ll call
him “Jack.” Is Jack possibly actual?31 For Leibniz, Jack’s non-actuality
isn’t just tagged externally to the complete concept as if to say, “noth-
ing actual answers to this complete concept.” Instead, we find it in the
complete concept’s very innards. Since something must satisfy a con-
cept’s parts to satisfy the concept wholly, Jack cannot be actual and
satisfy his own concept without satisfying the concept of being non-
actual. Since satisfying the concept of being non-actual would require
being non-actual, Jack’s actuality would require his non-actuality. But
nothing can be both actual and non-actual. So, presumably, Jack is not
possibly actual.

Leibniz disagrees, however. Leibniz preserves Jack’s possible actu-
ality with his infinite analysis account of contingency. This account
implies that something is impossible only if there’s a finite proof of
its negation.32 For reasons I lack the space to explain here, Leibniz
believes that the proofs for the non-actuality of things like Jack are
infinitely long.33 Therefore, absent any finite proof of Jack’s being non-
actual, Jack counts as possibly actual despite the existence of a proof
to the contrary.

The containment theory and the infinite analysis account come as a
packaged deal. To preserve the contingency of some universal affirma-
tives, Leibniz slips the concept of being non-actual into the concepts of
non-actualia. Doing so threatens the contingency of what is and isn’t
actual, but Leibniz rescues that contingency with his infinite analy-
sis account. However, the infinite analysis account doesn’t capture an
absolute notion of metaphysical possibility. If there is a proof for some-

30. But with Inversion-1, it implies that being an actual renate and being an actual
cordate are identical.
31. I agree with Van Inwagen (1980, 424–425), Bennett (2005, 316), and others
that possibility and possible actuality amount to the same thing. But Leibniz’s
views require us to put the argument here in terms of possible actuality.
32. For references and a recent take on Leibniz’s theory, see Merlo (2012).
33. AG 19 and C 376/P 66.

thing’s negation, it is metaphysically impossible, whether the proof is
finite or not. Therefore, anyone who wants to update the containment
theory must treat universal affirmatives differently to avoid counting
the non-actual as impossible. But how?

To review, the containment theory’s use of primitive intensions ex-
poses it to deep problems with both quantified and relational state-
ments. So quantified relational statements are doubly problematic
within the containment theory. In § 5, I formulate a new approach to
first-order logic with primitive intensions that avoids these problems.
But, first, let’s cover some background.

4. Property Parthood

Developing a formally adequate intensional approach to first-order
logic doesn’t require maximal specificity about the metaphysics of in-
tensional entities—no more so than an extensional approach to first-
order logic requires a specific metaphysics of material objects.34 The
intensional entities could be Leibnizian concepts or Platonic universals
or even fictions. But for brevity’s sake, I will call them “properties.”
With this shorthand, I don’t mean to endorse any particular account
of properties. Nor do I mean to preclude every single account of their
nature which would distinguish them from other entities sometimes
called “properties.”

I assign properties not only to predicates, but to names, too. Given
Subject Containment, then, some properties contain other properties.
How should we understand this containment? We might understand
property containment as Leibnizian conceptual containment if proper-
ties are concepts. Or we can understand containment as the converse
of a special property parthood relation if we identify properties with
universals.35 Since property containment is the converse of property

34. Stalnaker (1984, 57) argues similarly in defense of a more metaphysically
neutral account of possible worlds.
35. For a theory of property parthood best-suited for my purposes, see Warmke
(2015, 316–323). The property mereologies in Paul (2002, 2006) are also formally
compatible with the intensional approach in the next section, as far as I can tell.
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parthood (being F is part of being G just in case being G contains being
F), an approach is no less intensional for adopting one or the other.
In fact, property parthood allows us to describe more concisely the
properties which a property contains. We may call these a property’s
“parts.” Although parthood itself is relatively well-understood, prop-
erty parthood is not. And, as far as I know, property parthood has
not been used in a semantics for first-order logic. So before I present
the semantics, let’s first examine my preferred theory of property part-
hood.36

4.1 The Mereology
I’ll use ‘proper part’ as my primitive mereological notion. The defini-
tions and axioms are transplants from classical extensional mereology
applied to properties rather than objects.37 Lower-case variables (x, y,
z) range over properties, not objects.

Definition 1. x is part of y iff x is either a proper part of y or
identical to y.
Definition 2. x and y overlap iff some z is part of both x and y.
Definition 3. x and y are disjoint iff x and y do not overlap.
Definition 4. x is a sum of the ys iff (each of the ys is part of x
and (any z overlaps one of the ys iff z overlaps x)).
Asymmetry. If x is a proper part of y, y isn’t a proper part of x.

Paul presents her mereology within the context of a bundle theory of ordinary
objects. I’m not a bundle theorist, but my intensional approach should appeal
to mereological bundle theorists. Paul says that individuals are sums or fusions
of properties. So if the properties which compose individuals also characterize
them (i.e., if the property of being F is part of an individual just in case the
individual is an F), then a bundle theorist can view my approach as a meta-
physical semantics in the sense of Sider (2011, 112). Also see fn. 48 for how
mereological bundle theory would simplify my semantics.
36. In Warmke (2015, 316–320), I defend my conception of property parthood
and distinguish it from others in the literature.
37. The final two axioms in Warmke (2015, 322–323) govern the second-order
properties of being certain properties. Since the semantics in § 5 needs no
second-order properties, I ignore those axioms here.

Transitivity. If x is a proper part of y, and y is a proper part of
z, then x is a proper part of z.
Weak Supplementation. If x is a proper part of y, then y has
another proper part disjoint from x.
Unrestricted Composition. For any specifiable set of properties
whatever, there is a sum of those properties which is itself a
property.

Some examples will help illustrate the general picture. Being a mammal
is part of both being a dog and being a cat. In fact, being a mammal is
a proper part of both since it is part of each but identical to neither.
By Asymmetry, then, we should expect that neither being a dog nor
being a cat is a proper part of being an animal. And, by Transitivity,
we should expect that since being an animal is a proper part of being
a mammal, it is also a proper part of being a dog and being a cat. As a
result, these latter two properties overlap. (Non-overlapping or disjoint
pairs of properties have no parts in common. Perhaps being a rock and
being rational are disjoint.) Being a dog has parts besides being an animal.
Being a dog is a sum of being an animal and the rest of its parts, whatever
they are.

Weak Supplementation ensures that no proper part of a property
overlaps with every other proper part.38 Since being an animal is a
proper part of being a cat, being a cat has at least one proper part disjoint
from being an animal. Having a backbone is one possible candidate. It is
a proper part of being a cat. But since not all animals have backbones,
it is not part of being an animal. A wise guy might suggest that a prop-
erty such as being composed of organic material is part of not only having

38. One might worry that for any properties P1, P2, ..., Pn, there is a disjunctive
property P1 ∨ P2 ... ∨ ... Pn which is part of every one of its disjuncts. If there is
universal overlap among properties, then Weak Supplementation fails spectac-
ularly. I suspect that the main motivation for universal overlap comes from a
modal analysis of property parthood according to which being F is part of being
G iff necessarily, all Gs are Fs. But I reject the modal analysis partly due to the
view I specify in § 2 about the relation between modality and intensionality.
For more discussion on this point, see Warmke (2015).
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a backbone and being a cat but also being an animal, which would mean
that we haven’t pinpointed a genuine case of disjoint proper parts.
But if being composed of organic material overlaps both having a backbone
and being an animal, subtract it and other similar properties from hav-
ing a backbone to find a remainder disjoint from being an animal. That
remainder might involve, say, having a column for an enclosed cord that
sends messages from one location to another. Such a column needn’t be
composed of organic material. The lesson to draw here is that the way
we carve up properties with our linguistic and conceptual resources
may make it difficult for us to divvy up a property into its disjoint
proper parts.39

By Unrestricted Composition, any set of properties forms a sum,
which is also a property. Even if some properties are not actually or
even possibly co-exemplified, their sum exists all the same. No gold
mountains may exist, but the sum of being gold and being a mountain
does. And although round squares cannot exist, the sum of being round
and being square exists. As a result, the present view of property part-
hood involves a Platonic conception of properties in the sense that
allows some properties to exist unexemplified.40

And that is not all that the parthood theory requires. The property
of being a gold mountain is not a sparse property, in the sense of Lewis
(1986: 60), either.41 It is not in some minimal base of properties which
together characterize things completely and non-redundantly. My in-
tensional approach requires a more abundant conception of properties.
As I explain in the next subsection, we need non-sparse properties for

39. And that’s consistent with saying that some of these proper parts are dis-
junctive. But it is also important to note about disjunctive properties that if
being B or C is part of being A, that being B and being C aren’t thereby parts of
being A. Such an inference does hold for the Boolean conception of property
parthood we find in Zimmerman (1997, 463) and Rosenkrantz and Hoffman
(1991, 845).
40. But the intensional approach itself is compatible with a quasi-Aristotelian
view according to which all atomic properties are exemplified, even if some
non-atomic properties aren’t.
41. For more discussion on abundant properties and property parthood see
Warmke (2015, 314 ff.).

the values of names. And we will obviously need them for predicates
if we interpret any as expressing non-sparse properties.

Now, intensional entities have often been disparaged for not having
clear identity conditions.42 The standard solution, which I set aside in
§ 2, defines a property in terms of its extension across possible worlds.
Instead, I define property identity as complete overlap:

Identity. x is identical to y if and only if every part of x is part
of y and every part of y is part of x.

Identity as complete overlap also allows for distinct but necessarily co-
extensive properties. Different parts, different properties, even if they
are necessarily coextensive.43 Properties such as being a human and be-
ing a human and the member of a set aren’t identical if one has a part
the other does not. Presumably, the latter but not the former has being
the member of a set as a part. Or someone could argue as much, anyway,
and so distinguish these properties without using impossible worlds.44

Although my favored background metaphysics requires Weak Sup-
plementation, Unrestricted Composition, and a Platonic conception of
properties, the intensional approach itself does not. But the approach
does require an abundant conception of properties, and Unrestricted
Composition fits well with that conception. In any case, my seman-
tics needs some property mereology or other, and the formal theory
sketched here meets my needs.

In § 2, I set aside Montague semantics primarily because it uses
possibility space to define its intensional entities. I set my sights on an
intensional approach with primitive intensions instead. Happily, I have
not used possibility space to define either the intensional entities here

42. See Quine (1957, 17–19), for example.
43. Zalta (1993, 406–407) avoids Quine’s charge with an account of property
identity which also permits distinct though necessarily coextensive properties.
44. We can run a similar argument to distinguish some necessarily unexem-
plified properties. The property of being round and square differs from the
property of being red and blue all over as long as they have different parts.
Presumably, they do. Being round is part of the first and not the second, and
being red is part of the second but not the first.
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or the parthood relation among them. In fact, I have elsewhere used
property parthood to define the modal notions.45 So the mereology
here does not sneak in possible worlds through the back door of an
approach built on top of it.46

4.2 Complete Properties
The semantic values of names will be properties which resemble Leib-
nizian complete concepts in both form and function. An individual’s
complete property captures its individual’s monadic and relational fea-
tures. Relations have posed longstanding problems for Leibniz’s ap-
proach. And we will need the entire semantic machinery to handle
them. But we can at least preview the monadic case: a sentence a is F
is true just in case being F is part of a’s complete property.

Since I aim to offer a semantics for classical first-order logic, I will
assume that complete properties behave in ways that help secure the
theorems of classical logic. Classical logic prohibits anything from be-
ing neither F nor not-F. So I will assume that for every predicate F
in the chosen language, each individual’s complete property either
has or lacks the property of being F as a part. Consequently, I will
ignore issues about vagueness and various paradoxes. Classical logic
also prohibits anything from being both F and not-F. This translates
to prohibiting any property from both being and not being part of a
complete property. Furthermore, I avoid the negative property of being
not-F to account for a’s not being F.

Along the way, we will answer some questions about identity.
Will the approach secure the Indiscernibility of Identicals? Does its

45. Warmke (2015).
46. The point isn’t that possible worlds appear nowhere in the background
metaphysics. For relations among intensional entities to determine possibility
space, possibility space has to exist to be so determined. And the background
mereology helps explain this determination: each “possible world” is a prop-
erty composed of more basic propositional properties. The point here is that
the intensional approach in the next section does not ultimately rely on possi-
bility space but on the more fundamental intensional entities which determine
that space.

Leibnizian pedigree ultimately commit it to the the Identity of Indis-
cernibles? These issues are further complicated because identity state-
ments are themselves relational. I’ll save these questions about identity
for § 5.7, after I’ve explained how to treat relations generally in § 5.5.

5. Logical Intensionalism

Even though the semantics here uses primitive intensions with a kind
of Leibnizian containment structure, it avoids the problems we encoun-
tered with the containment theory in § 3. We will first specify a lan-
guage and then skip to the semantics without choosing a particular
deductive system. We resolve the formal problem of relations in § 5.5
and the problem with quantification in § 5.6.

5.1 Language
I will use a standard language L whose primitive vocabulary includes
a fixed denumerable stock of each of the following:

individual constants : c1, c2, c3, ...
individual variables: v1, v2, v3, ...
n-place predicates for each n > 0: An

1 , An
2 , An

3 , ...

To simplify matters, I’ll call constants “names” and use lower-case let-
ters from the head of the alphabet (e.g., ‘a’, ‘b’, ‘c’) without subscripts
as nicknames in place of certain names. I’ll also use lower-case letters
from the tail of the alphabet (e.g., ‘x’, ‘y’, ‘z’) as nicknames for certain
variables. And I’ll use upper-case letters without subscripts or super-
scripts (e.g., ‘F’, ‘G’, and ‘R’) as nicknames for certain predicates. I will
forego function symbols for simplicity’s sake.

The vocabulary also includes:

The logical connectives ¬ (negation), and ⊃ (conditional)
The universal quantifier ∀
The two-place identity predicate =

Punctuation marks (, and )
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I will also use metalinguistic variables for expressions in the object lan-
guage: α (with or without numerical subscripts) for terms, i.e., names
and variables; Π for predicates; and φ and ψ for well-formed formu-
las (wffs).47 Finally, I’ll take for granted the usual rules governing the
formation of wffs, the definition of a quantifier’s scope, and so on.

5.2 Names
The interpretation of names isn’t a non-stop flight from names to com-
plete properties. A name’s interpretation involves a composite func-
tion which takes a name to its referent and then gives the referent’s
complete property. So a model will require a non-empty set of actual
individuals (written Di) and a non-empty set of complete properties
(written Ds, since it is the domain for the values of subjects). And we
will need two functions to define the interpretation of names, one from
the set A of names in the language to individuals in Di and a 1-1 onto
function from Di to complete properties in Ds:

f1: A → Di

f2: Di → Ds

The function f1 takes a name and gives an individual i in Di. Then,
f2 takes the individual i in Di and gives i’s complete property, [i], in
Ds.48 The interpretation function I gives the value of a name α via f1

and f2:

I(α) = f2( f1(α))

Through f1 and f2, I assigns to each name a complete property.

47. I will often forego standard use/mention markers when the meaning is
clear.
48. A mereological bundle theorist may identify individuals with their com-
plete properties. Doing so would simplify the formalism significantly, since Ds
would collapse into Di. But I am not a bundle theorist, and most aren’t. So we
will take the more difficult path precisely because, this time, it is less narrow.

5.3 Variables
The value of a variable funnels through a variable assignment:

g is a variable assignment for a model M if and only if g is a
function that assigns to each variable α in L an individual i in
Di.

To assign values to variables, we also need a variable interpretation G,
which takes any variable α and assigns it a value via g and f2:

G(α) = f2(g(α))

Through g and f2, G assigns to each variable a complete property.
We can now define the value of any term and also introduce some

simplifying notation. Let M be a model, G be a variable interpretation
based on a variable assignment g, and α a term. We define |α|M,G , the
individual denoted by a term α (relative to M and G), as follows:

|α|M,G =

󰀻
󰁁󰁁󰀿

󰁁󰁁󰀽

f1(α), if α is a constant

g(α), if α is a variable

And we define 󰀂α󰀂M,g, the value of α (relative to M and G), as follows:

󰀂α󰀂M,G =

󰀻
󰁁󰁁󰀿

󰁁󰁁󰀽

I(α) = f2( f1(α)), if α is a constant

G(α) = f2(g(α)), if α is a variable

Hence, I’ll use single bars as in ‘|α|M,G ’ to refer to the individual as-
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signed to α. And I’ll use double bars as in ‘󰀂α󰀂M,G ’ to refer to the
complete property assigned to α.

5.4 Predicates
A predicate’s instance in an atomic wff Πα1 ... αn provides n different
properties. I’ll assume that predicates come pre-packaged with num-
bers assigned to their argument places: 1 to the first argument place, 2
to the second (if there is a second place), and so on, until n is assigned
to the last place of an n-ary predicate. Relative to a model M and a
variable interpretation G based on g, for each atomic wff Πα1 ... αn,
there is an ordered set 〈|α1|M,G , ..., |αn|M,G〉 whose mth member is the
individual either f1 or g assigns to the term in the mth argument place
of the wff. If the mth term αm is a name, the mth member in the set is
given by f1; if the mth term is a variable, the mth member in the set
is given by the variable assignment g. Let’s call the resulting set the
individual set of a predicate’s instance. From the individual set of an n-
ary predicate’s instance within an atomic wff, we’re given a further set
of n-many properties. Each of these properties abstracts from a single
member of the individual set.

Consider the atomic wff ‘Rab’ and assume that in our model, f1(a)
= Amy and f1(b) = Ben. Then, the individual set for the predicate
in ‘Rab’ is 〈Amy, Ben〉. Suppose ‘Rab’ says that Amy loves Ben. The
individual set then provides us with two properties: the property of
loving Ben (written love[ _ , Ben]) and the property of being loved
by Amy (love[Amy, _ ]). We may assign sets of love[...]-properties not
only to instances of ‘R’ but also to instances of other binary predicates.
Since we won’t have occasion to assign the same kind of property to
different predicates in the course of the exposition here, I’ll adopt the
convention of using property expressions with the predicate letter itself
in bold. Hence, we’ll simply use ‘R[ _ , Ben]’ instead of ‘love[ _ , Ben]’.

The interpretation function takes an instance of Π within any
atomic wff Πα1 ... αn and provides a set of n-many Π[...]-properties.
Formally, if Π is an n-place predicate in the atomic wff Πα1 ... αn, then

relative to a variable interpretation G based on g, I(Πα1 ... αn) = {Π[ _
, ..., |αn|M,G ], ..., Π[|α1|M,G , ..., _ ]}, the set which contains a property
abstracted from the individual associated with each argument place,
where the individual associated with each argument comes by way of
f1 (if a name occurs in that place) or g (if a variable does).49

The interpretation function draws these non-complete properties
from a further domain of properties (written Dp, since it is the do-
main of values for predicates). Dp contains for each type of property
Π[...], the Π[...]-properties with every permutation (with repetition) of
individuals from Di relative to each abstracted argument place. So, for
example, suppose we want to populate Dp with 3-ary H[...]-properties
and the individual domain Di has four individuals (a1, a2, a3, and a4).
When we abstract from the first argument place, we form all the per-
mutations for the remaining two “spots.” Sixteen such properties re-
sult: H[ _ , a1, a1] through H[ _ , a1, a4], H[ _ , a2, a1] through H[ _ , a2,
a4], and so on. Dp then contains forty-eight different H[...]-properties,
since we have sixteen permutations for each of the three argument
places.

Where k is the number of individuals in Di, the equation below
gives the number of n-ary Π[...]-properties in Dp for each Π[...]-type:

n · kn−1

49. It is worth highlighting that unlike the interpretation of predicates in stan-
dard extensional treatments, the interpretation function here needs some vari-
able assignment or other to interpret predicate instances. An anonymous ref-
eree has helpfully suggested that we think of the interpretation function as
a higher-order function that takes a variable interpretation and, with that in-
put, assigns values to constants and predicate instances. No intensional model
involves any particular variable interpretation, but the interpretation function
in each model is, in a sense, incomplete without supplementing it with some
variable interpretation or other. I’m unsure whether this is the best strategy for
construing the relationship between the interpretation function and the vari-
able assignment, but I am sure I can’t think of any better way right now. At
any rate, whatever way we understand the connection will involve some sig-
nificant departure from standard extensional approaches.
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When we factor in arbitrarily large relations with a populous domain
of individuals, Dp will contain a plenitude of properties. This may
pose problems for some. But since I’ve already endorsed an abundant
conception of properties, I’m not going to balk now simply because we
can calculate their abundance. Additionally, the abundance has some
theoretical justification. Suppose no one loves anyone but no one hates
anyone either. Then, logical extensionalism assigns the same empty set
to both relations and blurs the distinction between loving and hating.
But with the extra properties at our disposal, we can say that the prop-
erties of loving Ted and hating Ted are distinct, in the domain Dp, and
had by none.50

We now have all the ingredients to define an intensional model. A
model M = 〈Di, Ds, Dp, f1, f2, I〉 is such that:

• Di is a non-empty set of actual individuals.
• Ds is a non-empty set of the complete properties of actual individ-

uals.
• Dp is a non-empty set of non-complete properties.
• f1 is a function from the set A of names in L to Di

• f2 is a 1-1 onto function from Di to Ds.
• I obeys the following constraints:

if α is a name, I(α) = f2( f1(α)), a complete property [i] ∈ Ds.
If Π is an n-place predicate, then given some g and G, I(Πα1

... αn) is the set {Π[ _ , ..., |αn|M,G ], ..., Π[|α1|M,G , ..., _ ]} ⊆ Dp,

50. I should note that we can rearrange the formalism to appeal to those with a
more Aristotelian conception of properties. In extensional models, the interpre-
tation function draws from the domain of individuals to provide the meanings
of predicates. The values of predicates are collections of individuals from that
domain. The more Aristotelian rearrangement would do something like the
inverse of that: the values of predicates would be parts of the complete prop-
erties in the domain of complete properties. Directly or indirectly, Ds would
contain all the properties there are. So although the intensional approach here
posits many unexemplified properties, logical intensionalism as such does not
require them. Therefore, in connection with fn. 48, an Aristotelian bundle the-
orist could collapse Di, Ds, and Dp into one domain and then nix f1 and f2.

and which contains a property abstracted from the individual asso-
ciated with each argument place in Πα1 ... αn, where the individual
associated with each argument comes by way of f1 (if a name occurs
in that place) or g (if a variable does).

5.5 Relations
Now we can resolve the formal problem of relations. Each name within
an atomic sentence serves as a logical subject, no matter how many
argument places the sentence has. Roughly, an atomic sentence is
true if and only if each name within that sentence corresponds to
some individual’s complete property which contains the property ab-
stracted from that individual. An example will illustrate the general
idea. Where f1(a) = Amy, f1(b) = Ben, f1(c) = Cal and so I(a) = [Amy],
I(b) = [Ben], I(c) = [Cal], Habc is true iff H[ _ , Ben, Cal] is part of
[Amy], H[Amy, _ , Cal] is part of [Ben], and H[Amy, Ben, _] is part of
[Cal]. Notably, if Habc says that Amy is between Ben and Cal, then H[
_ , Ben, Cal] is the property of being between the individuals Ben and
Cal and not the property of being between the complete properties of
Ben and Cal. As desired, we avoid the result that the sentence’s truth
requires that Amy’s complete property contains the property of being
between the complete properties of Ben and Cal.

My approach systematically handles predicates of any arity. For-
mally, an atomic wff Πα1 ... αn is true relative to a model M and a
variable interpretation G (based on an assignment g) just in case for
each m, 1 ≤ m ≤ n, if Π[|α1|M,G , ..., _ , |αm+1|M,G , |αn|M,G ] is a mem-
ber of I(Πα1 ... αn), then Π[|α1|M,G , ..., _ , |αm+1|M,G , |αn|M,G ] is part
of I(αm), the complete property which corresponds to the mth name
of the sentence. Each relatum’s complete property contains a monadic
property with a relational aspect, and the relational aspect concerns
the relation from the relatum’s point of view.51

With the problem of relations now dissolved, we may finally char-

51. Compare A VI. iv. 1645–46 = C 52/AG 32, L 268. Zalta (2000, §. 8.3) argues
that Leibnizian complete concepts contain concepts with relational aspects.
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acterize complete properties as advertised in § 4.2. Given the truth
conditions for atomic wffs above, an individual’s complete property
contains all and only what is truly predicable of the individual. Fur-
thermore, since we’re providing a semantics for classical first-order
logic, we require that every complete property [i] in Ds is such that for
any non-complete property Π[...] in Dp:

(a) Either Π[...] is or is not part of [i], and
(b) It’s not the case that Π[...] both is and isn’t part of [i].

Both conditions are reasonable. And both are necessary in a seman-
tics for classical first-order logic. For, along with the truth conditions
for atomic wffs given above, condition (a) helps ensure that there are
no truth-value gaps and condition (b) helps ensure that there are no
inconsistencies.

Standardly, Amy loves Ben only if the ordered pair 〈Amy, Ben〉
is a member of the set of lover-loved pairs. But as soon as we insert
that ordered pair into that set, Ben comes along for the ride as be-
ing loved by Amy. Classical extensional models are harmonious—when
such a model says that a R-relates to b, the same model guarantees
that b is something such that a R-relates to it. Now some may find my
truth conditions for atomic wffs objectionable since they license inhar-
monious models. The present approach has models in which Amy’s
complete property contains the property of loving Ben without Ben’s
complete property containing the property of being loved by Amy.
In these models, it is false that Amy loves Ben, but the falsity arises
from disharmonious complete concepts. Since we’re accustomed to the
inescapably harmonious models of extensional approaches, we may
wonder whether a semantics is deficient if some of its models are in-
harmonious.

More specifically, one might object that inharmonious models rep-
resent impossibilities that a semantics for first-order logic should not
be able to represent. But, first, is relational disharmony so clearly im-
possible? Leibniz thought that (1) relations ultimately reduced to the
intrinsic features of monads and that (2) in some sense, God could

destroy every other monad though the world would appear to chug
along from my dominant monad’s point of view.52 I’m not completely
certain that Leibniz was wrong, and, with a slightly different inter-
pretation of the semantics itself, inharmonious models could represent
these and similar scenarios. In these inharmonious models, no rela-
tional statement would be true. But we could point to what makes
each such statement false in order to explain why they seem true to
the lonely monad.

Importantly, disharmony always suffices for the falsity of the cor-
responding relational statement. So even if, as I’m inclined to think,
disharmony is metaphysically impossible, inharmonious models sim-
ply use these metaphysical impossibilities to capture extra ways for
relational statements to be false. We can use standard extensional ap-
proaches to represent metaphysical impossibilities, too. And, for some
purposes, theorists might prefer a semantics which can represent more
rather than fewer kinds of metaphysical impossibilities. Some recent
accounts of belief and content, for example, crucially involve impossi-
bilities.53

One might also argue that although inharmonious scenarios are
metaphysically impossible, they are nonetheless logically possible. On
this line of thought, since the property of loving Ben differs from the
property of being loved by Amy, we should be able to model formally
that Amy has the first while Ben lacks the second. And perhaps it
is better that a semantics for first-order logic captures more logically
possible scenarios, even if some of them are metaphysically impossible.

In any case, the intensional approach has additional expressive
power but still validates all and only the theorems of classical first-
order logic, as we shall see. This isn’t a trade-off, then, but a win-win.

52. DM 14.
53. See Jago (2014) and the references therein for a number of these accounts.
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5.6 Quantification
Everything is such-and-such when the property of being such-and-
such is part of each complete property in Ds. But we will need some
machinery to flesh out this idea. A variable assignment gx

i is an x-
variant of g when it differs at most from g in what individual i it assigns
to x. For a variable assignment g and each of its x-variants gx

i , there
is a unique variable interpretation Gx

[i] such that Gx
[i] = f2(gx

i ). These
Gx-variants of G disagree at most about which complete property [i]
is assigned to x but otherwise agree with G about which variables get
which complete properties.

With this machinery, we can say that a wff ∀xφ is true in a model
under a variable interpretation G (based on g) just in case, for all [i]
in Ds, φ is true under the variable interpretation Gx

[i]. And with this
treatment, we dissolve the problem of contingently true universal state-
ments. Consider once more the proposition that all renates are cordates
(written ‘∀x(Rx ⊃ Cx)’). It is true when every complete property [i] is
such that if R[_] is part of [i], so is C[_]. The sentence’s truth does not
require that R[_] itself is part of C[_], as Leibniz’s treatment does. So
the semantics as such does not imply that all possible Rs are possi-
ble Cs. Thus, we do not need to use Leibniz’s strategy to avoid the
conclusion that all renates are cordates necessarily.

One might object that if any property is part of an individual’s
complete property, then the individual has that property necessarily
or essentially. For, then, if all actual Fs are also Gs, every actual F is a G
necessarily or essentially anyway. First, the inference to necessity fails
given my account of necessity in Warmke (2015). I claim that a propo-
sition φ is necessary when being such that φ is part of being a world
(in general). Presumably, many singular propositions lack this feature.
Second, the inference to essentiality fails because I distinguish an in-
dividual’s individual property (whose parts concern what is essential to
the individual) from the “larger” complete property of which the indi-
vidual property is but a proper part.54 The complete property contains

54. Arnauld initially seems to have a view like this in his correspondence with

what’s true about the individual, beyond what’s essential to that indi-
vidual. So we cannot conclude that Tom is essentially F merely because
being F is part of his complete property. And so we cannot infer that
all Fs are Gs essentially merely from the fact that all Fs are Gs.

5.7 Identity
Our strategy for treating relations provides a way to treat identity, too.
Each complete property [i] in Ds has a unique pair of identity parts =[ _
, i] and =[ i, _ ]. And an identity statement α = β is true in a model M
under a variable interpretation G when =[ _ , |β|M,G ] is part of 󰀂α󰀂M,G
and =[|α|M,G , _ ] is part of 󰀂β󰀂M,G . With this treatment, we secure
the Indiscernibility of Identicals without also securing the Identity of
Indiscernibles.

The Indiscernibility of Identicals says that if individual i1 and in-
dividual i2 are identical, then whatever is truly predicable of one is
truly predicable of the other. Since the parts of an individual’s com-
plete property capture everything truly predicable of that individual,
we can restate the principle intensionally:

Indiscernibility of Identicals. If i1 is identical with i2, every part
of [i1] is part of [i2] and vice versa.

If i1 is identical with i2 and in Di, then f2 assigns the same complete
property to i1 and i2. Since property identity requires complete overlap
of parts (§ 4.1), what’s truly predicable of i1 coincides exactly with
what’s truly predicable of i2. So in no intensional model do we violate
the Indiscernibility of Identicals.

The Identity of Indiscernibles says that, identity aside, if whatever
is truly predicable of i1 is also truly predicable of i2 and vice versa, i1
and i2 are identical. We can also restate this principle intensionally:

Identity of Indiscernibles. If, identity parts aside, every part of
[i1] is part of [i2] and vice versa, then i1 is identical with i2.

Leibniz. See LA 48-49.
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Since i1 is identical with i2 only if [i1] is identical with [i2], the Identity
of Indiscernibles holds only if no two complete properties share every
part except for their identity parts. But there are intensional models in
which different complete properties behave exactly this way. So despite
its Leibnizian pedigree, logical intensionalism as such permits non-
Leibnizian models which falsify the Identity of Indiscernibles.

Now, because f2 takes each i in Di to the complete property [i] in
Ds which contains =[ _ , i] and =[ i, _ ], we may treat identity in the
valuation function more simply. We will say that α = β is true relative to
a model M and variable interpretation G iff 󰀂α󰀂M,G = 󰀂β󰀂M,G . We can
ask many more questions about the metaphysics of identity within the
present context. Although these questions are interesting in their own
right, their consideration will only delay us from our goal of showing
that a Leibnizian intensional approach is possible. So we will set them
aside for now and continue on course.

5.8 Truth
The valuation function VM,G for a model M and a variable interpreta-
tion G (based on g) is the function that assigns to each wff either 0 or
1, given the constraints below:

(i) For any n-place predicate Π and any terms α1, ..., αn, VM,G (Πα1 ...
αn) = 1 iff for each m, 1 ≤ m ≤ n, if Π[|α1|M,G , ..., _ , |αm+1|M,G ,
|αn|M,G ] is a member of I(Πα1 ... αn), then it is part of 󰀂αm󰀂M,G .

(ii) VM,G (α = β) = 1 iff 󰀂α󰀂M,G = 󰀂β󰀂M,G .
(iii) For any wffs, φ, ψ, and any variable α:

(iiia) VM,G (¬φ) = 1 iff VM,G (φ) = 0
(iiib) VM,G (φ ⊃ ψ) = 1 iff either VM,G (φ) = 0 or VM,G (ψ) = 1
(iiic) VM,G (∀αφ) = 1 iff for all [i] in Ds, VM,Gα

[i]
(φ) = 1.

A wff φ is an intensional logical consequence of the wffs in set Γ (“Γ
⊨i φ”) when, for any intensional model Mi and any variable interpre-
tation G on Mi, if every wff ψ in Γ is such that VMi ,G (ψ) = 1, then

VMi ,G (φ) = 1.55 A wff φ is intensionally valid (“⊨i φ”) when, for any in-
tensional model Mi and any variable interpretation G on Mi, VMi ,G (φ)
= 1. And a wff φ is intensionally satisfiable when VMi ,G (φ) = 1 for some
model Mi and variable interpretation G.

In the Appendix, I prove that my account of logical consequence
is extensionally equivalent to the account of logical consequence in a
standard extensional approach for classical first-order logic. It follows
that my semantics captures the strong soundness and completeness of
a standard deductive system for classical first-order logic.

Technically, the approach as I’ve presented it does not qualify as
an intensional approach. In § 1, I define an intensional approach as
one which satisfies both Predicate Intensionality (a commitment to as-
signing an intensional entity to the predicate of a singular proposition
or sentence) and Subject Containment (a commitment to treating sin-
gular propositions or sentences as true when the semantic value of
the subject contains the semantic value of the predicate). However, my
approach assigns sets of properties to each atomic sentence or, as I
prefer to think, to the instance of the predicate contained within. My
approach, for example, assigns the singleton set {F[_]} to the instance
of the predicate ‘F’ within the sentence ‘Fa’. Sets aren’t intensional en-
tities, so my approach violates Predicate Intensionality. What’s more,
the sets which are the values of instances of predicates are not parts
of (or contained in) complete properties. Hence, my approach violates
Subject Containment, too.

However, we find a similar situation in standard extensional ap-
proaches. These standardly assign a set of n-tuples to each n-ary pred-
icate and hence assign a set of 1-tuples to each 1-ary predicate. So
the semantic value of each monadic predicate is not the predicate’s
extension, e.g., {Bill, John, Suzy}, but the set of unit sets of those indi-
viduals, e.g., {〈Bill〉, 〈John〉, 〈Suzy〉}—a violation of Predicate Exten-

55. We begin to use ‘i’ as a subscript here to distinguish these notions from
their extensional analogues in the next section.
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sionality.56 Thus, if a name’s semantic value is an individual and not
the individual’s singleton set, the predicate’s semantic value doesn’t
contain the subject’s semantic value in any true singular proposition
or sentence—a violation of Predicate Containment.

Each pair of violations results from adopting a general principle
for predicates of any arity. To formulate such a general principle, one
adopts the useful convention of treating monadic predicates as if they
were 1-ary relational predicates. Some textbook presentations of exten-
sional approaches forego that convention and treat monadic and rela-
tional predicates differently by assigning sets of individuals instead of
sets of 1-tuples to monadic predicates. I could similarly treat monadic
predicates as a special case and assign a monadic property instead of
its singleton to each instance of a monadic predicate. The resulting
approach would satisfy Predicate Intensionality since the meaning of
the predicate in a singular proposition or sentence would be a prop-
erty. And since, in a true singular proposition or sentence, the subject’s
value would contain the property which is the predicate’s value, the
approach would thereby satisfy Subject Containment, too. My seman-
tics and the one just sketched here do not differ substantially. In both
my approach and the one just sketched, ‘Fa’ is true iff the value of ‘a’
contains the property F[_]. The sets in mine merely serve as scaffolding
to prop up properties and ensure that relations among them determine
the proper truth conditions.

6. Conclusion

Much more could be said about how my semantics differs from stan-
dard extensional approaches. And even more could be said by way of
objection and defense. But our goal has been to show that, however
implausible some may find its underlying metaphysics, an intensional

56. Logicians may adopt the convention that a unit set is identical to its lone
member, in which case a set of unit sets and the set of the members of those
unit sets are identical. But the convention implies that each unit set is a member
of itself and thus conflicts with the Axiom of Regularity in Zermelo-Fraenkel
set theory. See Jech (2003, 63).

approach to first-order logic without worlds is possible. Like Leibniz’s
containment theory, my semantics uses primitive intensions. Yet un-
like the containment theory, my semantics covers relational sentences,
quantified sentences, and quantified relational sentences. It handles
contingently true universal affirmatives without a Leibnizian account
of contingency and can represent both hyperintensional distinctions
among properties and a certain kind of apparently impossible situa-
tion that extensional approaches cannot. The approach also captures
the strong soundness and completeness of first-order logic.

What lessons, if any, might we draw from this exercise? For
decades, philosophers have treated intensionality set-theoretically with
possible worlds and their inhabitants. Intensionality has been exten-
sionalized in one way or another largely because Kripke and others
built their semantic approaches to modal logic on the foundation of
logical extensionalism. Since intensionality wasn’t already built in on
the ground floor in interpretations of first-order logic, many saw the
worlds of possible worlds semantics, on the next floor up, as a useful
tool to illuminate intensional phenomena.57 And this tradition contin-
ues for the most part even among fans of hyperintensionality, in one
way or another.

Perhaps we’ve been working upside down. For, as Menzel (1993, 62)
says, “one would think that the foundations of intensionality shouldn’t
require such a heavy-handed modal metaphysics.” My semantics for
first-order logic builds intensionality into the ground floor where in-
tensional entities can roam freely without being bolted down by ac-
tual or even possible extensions. Intensional entities instead bolt down
possible extensions. If we have primitive intensions, we needn’t look
to modal logic or the possible worlds typically used in its treatment
to capture intensionality or even hyperintensionality. In fact, modal
logic itself can run on primitive intensions instead of possible worlds,
as I’ve argued elsewhere. These points suggest that philosophy might
have taken a different path, one in which primitive intensions and not

57. See Perry (1998) and Nolan (2014).
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possible worlds played the leading role in theories of meaning and
modality. So we may want to reconsider the practice of using possible
worlds to characterize intensionality. Doing so would open up new av-
enues for discussions which have been framed largely in the language
of possible worlds.58

Appendix A. Equivalence Proof

Here, I prove that my theory’s account of logical consequence is exten-
sionally equivalent to the account of logical consequence in a standard
extensional approach. Where “Γ ⊨e φ” and “Γ ⊨i φ” say that φ is an
extensional consequence and intensional consequence of a set of for-
mulas Γ, we will prove:

Equivalence. Γ ⊨e φ iff Γ ⊨i φ.

To prove Equivalence, we first prove two theses about the relation
between intensional and extensional models. Where “Me, g ⊨e φ” says
that extensional model Me satisfies φ under assignment g and “Mi,
Gg ⊨i φ” says that intensional model Mi satisfies φ under a variable
interpretation G based on assignment g:

Models-EI. For each extensional model Me, there is an intensional
model Mi such that for some assignment g, Me, g ⊨e φ iff Mi, Gg

⊨i φ.
Models-IE. For each intensional model Mi, there is an extensional

model Me such that for some assignment g, Me, g ⊨e φ iff Mi, Gg

⊨i φ.

58. I’m grateful for the many who have offered comments on previous drafts,
especially Robert Adams, Keith Simmons, Thomas Hofweber, Laurie Paul, Bill
Lycan, David Buller, Dane Hewitt, Lenny Clapp, Geoff Pynn (who suggested
a Straussian reading of the paper), and a string of patient referees. There are
many others I’ve forgotten, I’m sure. Please forgive me for my lapse in memory
here, as well as the mistakes which surely remain. Finally, I owe a special debt
to Laura Warmke and Brandon Warmke for encouragement and moral support.

In other words, each extensional model agrees with some intensional
model about what’s satisfiable, and each intensional model agrees with
some extensional model about what’s satisfiable.

Before we prove Models-EI and Models-IE, we first need a stan-
dard extensional approach. Let an extensional model Me be an ordered
pair 〈D, I e〉 such that D is a non-empty set of individuals and the in-
terpretation function I e is such that:

if α is a constant, then I e(α) ∈ D
if Π is an n-place predicate, then I e(Π) is an n-place relation de-
fined over D.

The denotation of a term α borrows our definition of an assignment g.

|α|Me ,g =

󰀻
󰁁󰁁󰀿

󰁁󰁁󰀽

Ie(α), if α is a constant

g(α), if α is a variable

The valuation function VMe ,g for a model Me and a variable assign-
ment g is the function that assigns to each wff either 0 or 1, given the
constraints below:

(i*) For any n-place predicate Π and any terms α1, ..., αn, VMe ,g(Πα1 ...
αn) = 1 iff 〈 |α1|Me ,g, ..., |αn|Me ,g〉 ∈ I e(Π)

(ii*) VMe ,g(α = β) = 1 iff |α|Me ,g = |β|Me ,g.
(iii*) For any wffs, φ, ψ, and any variable α:

(iiia*) VMe ,g(¬φ) = 1 iff VMe ,g(φ) = 0
(iiib*) VMe ,g(φ ⊃ ψ) = 1 iff either VMe ,g(φ) = 0 or VMe ,g(ψ) = 1
(iiic*) VMe ,g(∀αφ) = 1 iff for every u ∈ D, VMe ,gα

u (φ) = 1

A wff φ is an extensional logical consequence of the wffs in set Γ (“Γ ⊨e φ”)
when, for any extensional model Me and any assignment g, if every
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wff ψ in Γ is such that VMe ,g(ψ) = 1, then VMe ,g(φ) = 1. A wff φ is
extensionally valid (“⊨e φ”) when, for any extensional model Me and
any assignment g, VMe ,g(φ) = 1. And a wff φ is extensionally satisfiable
when VMe ,g(φ) = 1 for some extensional model Me and assignment g.

With the extensional approach now in our pocket, we can begin to
prove Models-EI.

A.1 Proof of Models-EI
Each extensional model Me includes a domain D and an interpretation
function I e. The domain D of individuals in the extensional model Me

is identical to the domain of individuals Di in some class of intensional
models. We will call these intensional models base equivalent.

The function f2 in the intensional approach is a bijection from Di

to complete properties in Ds. So for any extensional model Me, there
is a bijection from its domain D to the domain of complete properties
Ds in base equivalent intensional models.

Now, the interpretation function I e in any extensional model Me

assigns individuals in D to constants in L. For each extensional model
Me, where α is any constant, there is a subclass of base equivalent
intensional models according to which I e(α) = i ∈ D iff f1(α) = i ∈ Di.
For these name equivalent intensional models, I e(α) = i ∈ D iff I i(α) =
[i] ∈ Ds.59 Of these name equivalent intensional models, at least one
is also atomic equivalent, or such that for any n-place predicate Π and
any terms α1, ..., αn, 〈|α1|Me ,g, ..., |αn|Me ,g〉 ∈ I e(Π) iff for each m, 1 ≤
m ≤ n, Π[|α1|M,G , ..., _ , |αm+1|M,G , |αn|M,G ] ∈ I i(Πα1 ... αn) is part of
󰀂αm󰀂M,G .60

59. From now on, I use ‘i’ as a subscript to distinguish the intensional interpre-
tation function from its extensional counterpart, I e.
60. As long as some n-ary atomic wff is false in Me and n > 1, Me will have
more than one atomic equivalent intensional model since the existence of inhar-
monious models provides more ways for atomic formulas to be false. But here
is a function which defines a single atomic equivalent intensional model from
any extensional model. Given Me, let Mi be such that Di = D, and such that
for any n-place predicate Π and any terms α1, ..., αn, (i) 〈|α1|Me ,g ... |αn|Me ,g〉
∈ I e(Π) iff for each m, 1 ≤ m ≤ n, Π[|α1|M,G , ..., _ , |αm+1|M,G , |αn|M,G ] ∈

In summary, every extensional model has an at least one intensional
model which is atomic equivalent and therefore both base and name
equivalent. And now we may prove by induction that each extensional
model Me has some atomic equivalent intensional model Mi such that
for some assignment g, Me, g ⊨e A iff Mi, Gg ⊨i A. Let’s start with the
base case of atomic wffs:

When A is Πα1...αn

Since Me and Mi are atomic equivalent, VMe ,g(Πα1 ... αn) = 1 iff
VMi ,Gg (Πα1 ... αn) = 1, by (i) and (i*). Therefore, for every atomic wff
Πα1...αn, Me, g ⊨e Πα1...αn iff Mi, Gg ⊨i Πα1...αn.

When A is α = β

Since Me and Mi are atomic and hence name equivalent, I e(α) = I e(β)
∈ D iff I i(α) = I i(β)∈ Ds. Therefore, VMe ,g(α = β) = 1 iff VMi ,Gg (α = β)
= 1, by (ii) and (ii*). So for every wff α = β, Me, g ⊨e α = β iff Mi, Gg

⊨i α = β.

For the inductive hypothesis (IH), assume that for every formula B
less complex than formula A below, Me is such that for some atomic
equivalent intensional model Mi and some assignment g, Me, g ⊨e B
iff Mi, Gg ⊨i B. And for the inductive step, we show that the same
holds for any (non-atomic) wff A, assuming IH. We proceed by cases
of A’s main operator. (For ¬φ and φ ⊃ ψ, I will prove the left-to-right
direction only, since the right-to-left direction is symmetrical to it.)

When A is ¬φ

Suppose Me, g ⊨e ¬φ. Then, VMe ,g(¬φ) = 1. So VMe ,g(φ) = 0, by (iiia*).
By (IH), VMi ,Gg (φ) = 0. Therefore, VMi ,Gg (¬φ) = 1, by (iiia). Hence, Mi,
Gg ⊨i ¬φ.

I i(Πα1 ... αn) is part of 󰀂αm󰀂M,G , and (ii) Π[|α1|M,G , ..., _ , |αm+1|M,G , |αn|M,G ]
is part of I i(αm) for some m such that 1 ≤ m ≤ n, iff for every m, 1 ≤ m ≤
n, Π[|α1|M,G , ..., _ , |αm+1|M,G , |αn|M,G ] is part of I i(αm). This gives us the
harmonious atomic equivalent intensional model.
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When A is φ ⊃ ψ

Suppose Me, g ⊨e φ ⊃ ψ. Then, VMe ,g(φ ⊃ ψ) = 1. So either VMe ,g(φ) =
0 or VMe ,g(ψ) = 1, by (iiib*). By (IH), either VMi ,Gg (φ) = 0 or VMi ,Gg (ψ)
= 1. Then, by (iiib), VMi ,Gg (φ ⊃ ψ) = 1, and Mi, Gg ⊨i φ ⊃ ψ.

When A is ∀αφ

Suppose Me, g ⊨e ∀αφ. Then, VMe ,g(∀αφ) = 1 and for every u ∈ D,
VMe ,gα

u (φ) = 1, by (iiic*). Given the variable assignment g and each of
its α-variants gα

i , there is a variable interpretation G whose Gα-variants
are such that Gα

[i] = f2(gα
i ). By (IH), then, every u ∈ D is such that

VMe ,gα
u (φ) = 1 iff every [u] in Ds is such that VMi ,Gα

[u]
(φ) = 1. Therefore,

VMi ,G (∀αφ) = 1 and Mi, Gg ⊨i ∀αφ.

Suppose Mi, Gg ⊨i ∀αφ. Then, VMi ,G (∀αφ) = 1, and every [u] in Ds is
such that VMi ,Gα

[u]
= 1, by (iiic). The variable interpretation G is based

on the assignment g so that any Gα-variants Gα
[i] and any α-variants gα

i
are such that Gα

[i] = f2(gα
i ). Then, by IH, every [u] in Ds is such that

VMi ,Gα
[u]

(φ) = 1 iff every u ∈ D is such that VMe ,gα
u (φ) = 1. So for every

u ∈ D, VMe ,gα
u (φ) = 1, and, by (iiic*), Me ,g(∀αφ) = 1. So Me, g ⊨e ∀αφ.

By induction, then, each extensional model Me has some atomic equiv-
alent intensional model Mi such that for some assignment g, Me, g ⊨e

φ iff Mi, Gg ⊨i φ. This establishes Models-EI.

A.2 Proof of Models-IE
Each intensional model Mi includes a domain Di of individuals and
is identical to the domain of individuals D in some class of base equiv-
alent extensional models. The function f2 in the intensional approach
is a bijection from Di to complete properties in Ds. The inverse of a
bijective function is itself bijective, so there is also a bijective function
from Ds in Mi to Di. So for any intensional model Mi, there is a bi-
jection from its domain of complete properties Ds to the domain D of
base equivalent extensional models.

Now, the interpretation function I i in any intensional model Mi

assigns complete properties in Ds to constants in L. For each inten-
sional model Mi, where α is any constant, there is a subclass of base
equivalent extensional models according to which f1(α) = i ∈ Di iff
I e(α) = i ∈ D. These name equivalent extensional models are such that
I i(α) = [i] ∈ Ds iff I e(α) = i ∈ D. And of these name equivalent exten-
sional models, one is atomic equivalent, or such that for any n-place
predicate Π and any terms α1, ..., αn, 〈|α1|Me ,g, ..., |αn|Me ,g〉 ∈ I e(Π) iff
for each m, 1 ≤ m ≤ n, Π[|α1|M,G , ..., _ , |αm+1|M,G , |αn|M,G ] ∈ I i(Πα1

... αn) is part of 󰀂αm󰀂M,G .61

In summary, every intensional model has at least one extensional
model which is atomic equivalent and therefore both base and name
equivalent. We may now prove by induction that for each intensional
model Mi, some atomic equivalent extensional model Me is such that
for some assignment g, Mi, Gg ⊨i A iff Me, g ⊨e A. We’ll begin with
atomic wffs.

When A is Πα1...αn

Since Mi and Me are atomic equivalent, VMi ,Gg (Πα1 ... αn) = 1 iff
VMe ,g(Πα1 ... αn) = 1, by (i) and (i*). Therefore, for every atomic wff
Πα1...αn, Mi, Gg ⊨i Πα1...αn iff Me, g ⊨e Πα1...αn.

61. Given the existence of inharmonious intensional models, there is no func-
tion from extensional models to atomic equivalent intensional models. Each
extensional model instead has a class of atomic equivalent intensional models.
An extensional model’s class of atomic equivalent intensional models includes,
for every relational statement that is false on the extensional model, all the in-
harmonious models that account for that statement’s falsity inharmoniously.
Yet intensional models which differ only in how they account for the falsity of
certain relational statements will have the same atomic equivalent extensional
model. So suppose that in three otherwise identical intensional models, model
one has it that R[ _ , Ben] is part of [Amy] but R[Amy, _] isn’t part of [Ben];
model two has it that R[ _ , Ben] isn’t part of [Amy] and R[Amy, _] isn’t part of
[Ben]; and model three has it that R[ _ , Ben] isn’t part of [Amy] but R[Amy, _]
is part of [Ben]. The first and third models are inharmonious, but according to
the condition for atomic equivalence, all three models share the atomic equiva-
lent extensional model in which 〈Amy, Ben〉 isn’t in the set R of ordered pairs.
Since each intensional model has some atomic equivalent extensional model,
the proof for Models-IE shows that each intensional model satisfies all and only
the same formulas as some extensional model.
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When A is α = β

Since Mi and Me are atomic and hence name equivalent, I i(α) =
I i(β)∈ Ds iff I e(α) = I e(β) ∈ D. Therefore, VMi ,Gg (α = β) = 1 iff
VMe ,g(α = β) = 1, by (ii) and (ii*). So for every wff α = β, Mi, Gg

⊨i α = β iff Me, g ⊨e α = β.

For the inductive hypothesis (IH), assume that for every formula
B less complex than formula A below, each Mi is such that for some
atomic equivalent extensional model Me and some assignment g, Mi,
Gg ⊨i B iff Me, g ⊨e B. For the inductive step, we show that the same
holds for any (non-atomic) wff A, assuming IH. We proceed by cases of
A’s main operator. (For ¬φ and φ ⊃ ψ each, I will again prove the left-
to-right direction only, since the right-to-left direction is symmetrical
to it.)

When A is ¬φ

Suppose Mi, Gg ⊨i ¬φ. Then, VMi ,Gg (¬φ) = 1. So VMi ,Gg (φ) = 0, by
(iiia). By IH, VMe ,g(φ) = 0. So VMe ,g(¬φ) = 1, by (iiia*), and Me, g ⊨e

¬φ.

When A is φ ⊃ ψ

Suppose Mi, Gg ⊨i φ ⊃ ψ. Then, VMi ,Gg (φ ⊃ ψ) = 1. By (iiib), either
VMi ,Gg (φ) = 0 or VMi ,Gg (ψ) = 1. By IH, then, either VMe ,g(φ) = 0 or
VMe ,g(ψ) = 1. As a result, VMe ,g(φ ⊃ ψ) = 1, by (iiib*). Therefore, Me,
g ⊨e φ ⊃ ψ.

When A is ∀αφ

Suppose Mi, Gg ⊨i ∀αφ. Then, VMi ,G (∀αφ) = 1, and every [u] in Ds is
such that VMi ,Gα

[u]
(φ) = 1, by (iiic). The variable interpretation G is based

on the assignment g so that any Gα-variants Gα
[i] and any α-variants gα

i
are such that Gα

[i] = f2(gα
i ). Then, by IH, for every u ∈ D, VMe ,gα

u (φ) = 1,
and, by (iiic*), VMe ,g(∀αφ) = 1. So Me, g ⊨e ∀αφ.

Suppose Me, g ⊨e ∀αφ. Then, VMe ,g(∀αφ) = 1 and, by (iiic*), for every

u ∈ D, VMe ,gα
u (φ) = 1. Given the variable assignment g and each of

its α-variants gα
i , there is a variable interpretation G whose Gα-variants

are such that Gα
[i] = f2(gα

i ). By (IH), then, every [u] in Ds is such that
VMi ,Gα

[u]
(φ) = 1. By (iiic), VMi ,G (∀αφ) = 1, and Mi, Gg ⊨i ∀αφ.

By induction, each intensional model Mi has some atomic equivalent
extensional model Me such that for some assignment g, Mi, Gg ⊨i φ

iff Me, g ⊨e φ. This establishes Models-IE.

A.3 Proof of Equivalence
With Models-IE and Models-EI in hand, we may prove Equivalence.
First, we’ll prove the left-to-right direction, i.e., if Γ ⊨e φ, then Γ ⊨i φ.
For reductio, assume that Γ ⊨e φ but Γ ∕⊨i φ. This says, first, that ev-
ery extensional model Me which satisfies the wffs in Γ also satisfies
φ, and, second, that there is at least one intensional model Mi which
satisfies the wffs in Γ but fails to satisfy φ. But if there is such an in-
tensional model, then Models-IE implies that there is an extensional
model which satisfies the wffs in Γ but fails to satisfy φ. This contra-
dicts our assumption that no extensional model satisfies the wffs in
Γ but fails to satisfy φ. Therefore, we’ve established the left-to-right
direction of Equivalence.

Next, we prove the right-to-left direction, i.e., if Γ ⊨i φ, then Γ ⊨e

φ. For reductio, assume that Γ ⊨i φ but Γ ∕⊨e φ. This says, first, that
every intensional model Mi which satisfies the wffs in Γ satisfies φ,
and, second, that there is at least one extensional model Me which
satisfies the wffs in Γ but not φ. But given such an extensional model,
Models-EI implies that there is an intensional model which satisfies
the wffs in Γ but fails to satisfy φ. And this contradicts our assumption
that there is no such intensional model. So we have also proved the
right-to-left direction of Equivalence, which completes the proof for
Equivalence itself.

To review, my intensional approach provides an account of logical con-
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sequence which is extensionally equivalent to the account of logical
consequence in a standard extensional approach. As a result, it is rel-
atively easy to show that my intensional approach captures the strong
soundness and completeness of a standard deductive system for clas-
sical first-order logic.62
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